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It is shown how to derive rigorous mean-field theory from a type of many- 
body interaction. 
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Since the work of Kac et al. ~1~ in 1963, the classical or mean-field theories of  a 
variety of systems have been derived rigorously. They include the three- 
dimensional version and extension ~2,3~ of Ref. 1, quantum mechanical 
extensions, ~4,5> antiferromagnet and melting models, ~6~ classical correlation 
functions, ~7> and theories of amorphous ferromagnets ~8~ and metastable 
states.< 9~ 

The derivations are valuable because of the extensive use of mean-field 
theories in the literature. One objection to the theories is their inapplicability 
to the critical region of a phase transition. In particular they yield inaccurate 
values for critical exponents. On a more theoretical level they lack some 
appeal (see the introductory comments in Ref. 11) because the transitions are 
in a sense " fo rced"  by the application of a long-range limit operation on the 
thermodynamic functions. We outline here how this latter problem may be 
formally removed by an alternative formulation in terms of a type of many- 
body interaction. 

We take the total potential energy of N particles at points xl, x2,..., xN 
to be the sum of two-body, three-body, up to N-body interactions: 

U~(xl  .... .  x~)= ~ [ q ( x , - x , ) + ~ ( x , - x j ) ]  

+ ~ %(x~, xj, x,~) +-.. + *N(xl ..... xN) 
X<i<j<k<~N 

(1) 
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where 

and 

*~(xl ..... Xm) = ~ ~bm(x, - xj) (2) 
l <~i <j<~ra 

= ~ 2 )  ~k ~o(y~r) (3) ~bm(r)= ~ ( - 1 ) m - ~ ( k - 2  

~'~ = k -"Iv O) 

where v is the dimensionality of the system and ~ is a constant satisfying 

0 < "q < 1 (5) 

Our main result is that if q(r) and 9(r) satisfy the conditions imposed by 
Lebowitz and Penrose, then the pressure in the thermodynamic limit is given 
by the Maxwell construction or equal area rule c2~ applied to the function 

pO(p, T) + �89 2 (6) 

where p is the density, T is the temperature, pO is the pressure of a system with 
two-body potential q(r) alone, and 

a = f dr ~(r) (7) 

the integral being over all of v-dimensional space. The variational principle of 
Penrose and Gates holds under the weaker conditions oriq~ given in Ref. 3. 

To establish these results, we substitute (2) and (3) in (1) and obtain 

uN(xl ..... xN) = ~ [q(x~ - x3  + 7~v~(r~(x~ - x3}] (8) 
l~<i<]~<N 

We therefore have a genuine two-body interaction through q(r) and an 
artificial two-body potential yN~q~(yNr) which depends on the total number N 
of particles in the system. As N increases, the range ~ 1 of interaction also 
increases. 

This may be compared with the model of Lebowitz and Penrose, (m who 
use a two-body potential 

q(r) + y~cp(Tr ) 

where y is an arbitrary positive parameter. They then take the long-range 
limit Z --~ 0 after the thermodynamic limit N --~ oo. 

We note from (4) that 

7'~ --~ 0 as N ~ oo 
(9) 

N~lv ~ ~ ~ as N--+ oo 
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Consequently, we have 

ro << 7~71 << N 1Iv (10) 

for large N, where ro is the hard-core diameter of q(r). Hence we can divide 
the container into cells of volume w satisfying 

ro << oJ << 7'~7 z << N z/v ( l l )  

for large N. The inequalities of Lebowitz and Penrose therefore apply with 7'N 
replacing their parameter y. The result (6) then follows by their method. 

Our formulation gives (6), and the consequent van der Waals-Maxwell 
phase transition, without the use of the additional limiting operation 7' --~ 0. 
The present work is related to the extensive work of Fisher ~1~ and Fisher and 
Felderhof, <11) which describes the phase transitions in a class of one- 
dimensional models with many-body interactions. However, our model does 
not quite belong to the class considered by these authors, because our 
potentials ~,, do not satisfy their tempering conditions. 

On the other hand, our results provide an example of  a system which 
violates the usual conditions on interactions, but for which the thermo- 
dynamic limit exists and the pressure is a nondecreasing, continuous function 
of the density p. Thus the usual conditions are sufficient, but not necessary. 

The same formulation is applicable to other mean-field models. It may 
be contrasted with the Temperly model, which is a lattice gas (or Ising model) 
with interaction energy 

V 

( l /V) ~ a~crj and ~ at = N (12) 
l<~i<]<.V ~=1 

where o k = 0 or 1. This yields the van der Waals theory without the Maxwell 
construction. As the number of lattice sites V tends to infinity, the interaction 
decreases at the rate 1/V, while the thermodynamic limit imposes the con- 
dition N/V-+constant,  p. Consequently it is not possible to divide the 
system into cells in such a way that the interaction in a single cell is negligible, 
while each cell contains an arbitrarily large number of particles in the thermo- 
dynamic limit. Each cell contributes a factor �89 In the new model (and that 
of Lebowitz and Penrose) the factor �89 2 in (6) results from interactions 
between such cells. It is this feature, expressed through (11), which yields the 
Maxwell construction. 
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